
Policy Management Engine (PME): A Policy-Based
Schema to Classify and Manage Sensitive Data in

Cloud Storages
Faraz Fatemi Moghaddam*,†, Philipp Wieder*, Ramin Yahyapour*,†

*Gesellschaft fur wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), Göttingen, Germany
†Institute of Informatics, Georg-August-Universität Göttingen, Göttingen, Germany

Email: {faraz.fatemi-moghaddam, ramin.yahyapour, philipp.wieder}@gwdg.de

Abstract— One of the most challenging issues regarding to the
information policy concerns in cloud computing environments is
to provide an appropriate level of security for the stored data in
cloud storages. In fact, each individual cloud customer needs to be
granted reliable security level(s) based on defined details in SLA.
The main aim of this paper is to propose multi-level policy-based
schema to classify and manage data in cloud storages based on the
sensitivity and confidentiality for enhancement of reliability in
cloud computing environments. Furthermore, an efficient
algorithm has been introduced to ensure the accuracy and
authenticity of applying and managing defined policies according
to the capabilities of the cloud providers and requirements of cloud
customers. The most important characteristic of this model is
syntactic and semantic analysis of requested policies by validity
engine to provide reliable mapping between security mechanism
and requested policies. Moreover, Policy Match Gate and Policy
Checkpoint have been introduced to ensure about the policy
application process for all stored data based on defied policies in
Security Level Certificate.

Keywords—Cloud Computing; Policy Management; Security;
Policy Application; SLA; Security Level Certificate.

I. INTRODUCTION
 Cloud computing technology is an unprecedented paradigm
that uses the concepts of virtualization, processing power,
storage, connectivity, and sharing to provide pool of resources,
store and share them between various devices via a broad
network (i.e. Internet) to offer on-demand services to end users
in compliance with the concepts of isolation, security,
distribution, and elasticity [1]. Despite the considerable benefits
of cloud-based environments [2], there are some information
policy concerns such as security, privacy and access control that
have affected the reliability of this newfound technology [3].
One of the most challenging issues regarding to the information
policy concerns is to provide an appropriate level of security for
the stored data in cloud storages. In fact, each individual cloud
customer needs to be granted reliable security level(s) based on
defined details in SLA [4].

 These security levels might be common for all customers or
independent based on the data sensitivity. Applying a single
security level for all stored data is not efficient and takes
considerable processing power to manipulate sensitive and also

non-sensitive data. On the other hand, managing multiple
security levels is the most challenging concern in multi-level
policy models and needs an appropriate and efficient algorithm.
The most popular approach to express high-level security
constraints is based on the usage of metadata and languages for
the specification of security policies [5]. The main aim of this
paper is to propose multi-level policy-based schema to classify
and manage data in cloud storages based on the sensitivity and
confidentiality for enhancement of reliability in cloud
computing environments. Furthermore, an efficient algorithm
has been introduced to ensure the accuracy and authenticity of
applying and managing defined policies according to the
capabilities of the cloud providers and requirements of cloud
customers.

II. RELATED WORKS
 There are various policy-related classification algorithms that
are based on language and metadata for specification of security
policies. One of the defined frameworks that includes policy
model, definition language, sets of policy technologies and a
policy architecture meta model is proposed by IETF [6] to
represent, manage, share and reuse policies and policy
information in a vendor-independent, interoperable and
scalable manner. IETF model mostly focuses on network
policies to control IP-Security and Quality of Service (QoS) [7].
One of the most challenging efforts in this model is to map IETF
models into specified implementation schema [8] such as Web
Based Enterprise Management (WBEM) [9] or Directory
Enabled Network (DEN) [10].

 Ponder is an object oriented-based policy management
framework that was proposed by Imperial College [11] and
includes general architecture, policy deployment model and
various extensions for access control schema and QoS
management. This model allows users to define events,
constraints, constants and other reusable elements that can be
part of many policies and allows the instantiation of typed
policy specification to support parameterization of policies. The
main drawback of Ponder is the lack of generality [8] by using
several basic policy types and compositing policy types each
with various syntax.

 KAoS is an ontology language uses the Web Ontology
Language (OWL) [12] to allow users to define policies to grant
predictability and controllability of agents and distributed
systems such as grid computing and multi-agent systems [13].
Four main types of policies are defined in KAoS: Positive-
Authorization, Negative-Authorization, Positive-Obligation
and Negative-Obligation and similar to IETF, each policy is
associated with management properties. KAoS provides two
sets of services: Domain Services (that enable the hierarchical
grouping of users and computational entities to administrate
policies easier) and Policy Services (that is based on
specification, conflict resolution, management and policy
enforcement) [14].

 In 2002, HP labs proposed a policy framework (Rei) [15] to
provide an independent domain policy specification based on
deontic constructs and F-OWL reasoned [16] and to allow
several specification policies (i.e. right, prohibition,
dispensations and obligations). Rei supports two main meta
policies: Default Meta Policy (to describe the default behavior
of the policy) and Meta-Meta Policy (to allow the setting of
precedencies based on default meta policies).

 Di Modica and Tomarchio (2015) [17] suggested an approach
that leverages on the semantic technology to enrich
standardized security policies with an ad-hoc content and to
enable machine reasoning which is then used for both the
discovery and the composition of security-enabled services. In
this model, requirements and capabilities for cloud customers
and providers are defined within policies which are adopted to
policy intersection mechanism provided by WS-Policy [19].
WS-Policy is a recommended framework from W3C for policy
specification of Web Services that includes policies that are
defined as a collection of alternatives contain assertions to
specify well-established characteristics for using selection of
various services (e.g. requirements, capabilities or behaviors).

 In overall, the main concern of described models is the
discovery, interoperability and compatibility of security
requirements based on characteristics of current distributed
networks and cloud-based environments. Hence, this paper uses
the concepts of security ontology to define reliable and
interoperable security policies in virtualized infrastructure and
to grant syntactic and also semantic matching of security
policies.

III. PROPOSED MODEL
 The architecture of our proposed model is based on Protection
Ontology and have been described in two phases:
Establishment of Security Rings (ESR) and Policy Management
System (PMS). Protection ontology [19] is a defined object
oriented framework that includes potential security terms (i.e.
protocols, mechanisms and algorithms) and appropriate
relations between them to provide an efficient and reliable
policy management framework. This ontology is based on two
super classes (Policy Matrix and Policy Packages) and three
levels of security includes Protocol Level (Access Control,

Cryptography, Key Management, Transport, Authentication
and Signature Protocols), Mechanism Level (Several security
mechanisms for each protocol that are defined to provide
appropriate relation between the highest level and the lowest
level of architecture) and Algorithm Level (The lowest level of
the protection ontology that includes different security
algorithms). Fig. 1 shows an example of protection ontology in
details. In fact, the main aim of this ontology is to categorize
potential security terms of cloud provider (based on
capabilities) and establish appropriate connections between
them for a reliable policy management model.

Fig. 1. Structure of Protection Ontology

 To have a better understating of the model, the following
terms are defined:

• Cloud Provider (CP): A service provider that offers

customers cloud-based services such as storage. In our
suggested model, CP offers security models as a service to
customers and guarantees the availability and reliability of
offered terms based on defined details in SLA.

• Cloud Customer (CC): An organization or a company that
uses cloud services for employments or subscribers (e.g.
Universities, Hospitals, etc.).

• Cloud User (CU): Defined end-users that use cloud-based
services that are offered by CC according to the internal
contracts. (e.g. Students or Lecturers in a University).

 As was described, the proposed model is based on two phases
and the overview of these phases have been shown in figure 2.

Fig. 2. Overview of Policy Management Engine

A. Establishment of Security Rings (ESR)
The first phase of our model is providing security as a service
model for cloud customers based on protection ontology to
create dedicated security rings (levels) according to their
requirements and the capabilities of the cloud provider. In this
phase, cloud customers select desired security mechanisms and
set appropriate controls and policies regarding to the available
and offered mechanisms of service provider. Fig. 3. shows the
process of establishment of security rings in details.

 In this model, Policy Database component is updated based
on the potential security policies according to the capabilities of
the service provider (i.e. new or revoked mechanisms).
Typically, these updates have been done in the lowest level of
protection ontology (Algorithm Level) by creation or
elimination of new classes and affect relevant classes in upper
levels based on inheritance concepts. Finally, the policy matrix

super class is updated and one policy matrix object is created
by Policy Engine component for cloud customers regarding to
the last updates.

The created object is accessible to cloud customer by API and
the customer selects appropriate security mechanisms in each
protocol based on requirements. This selection may be one or
more in each protocol and is prioritized by the customer if the
selection in each mechanism is more than one algorithm.

The selected object is sent to Validity Engine component for
syntactic and semantic analysis of the selected policy object.
The process of validity analysis is performed in two steps
according to syntactic and semantic checking of policy matrix
object (Algorithm 1) to provide an un-certified policy package
object based on WS-Policy [18].

Fig. 3. Establishment of Security Rings

Algorithm 1
Syntactic and Semantic Analysis of Policy Matrix Object

Input: pm_object: a policy matrix object form policy matrix super class that is created by policy engine and modified with desired inputs by cloud
customer.

Output:
	 𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑣𝑎𝑙 == 𝑡𝑟𝑢𝑒
𝑆𝑒𝑛𝑑	 (𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡, 𝑉𝐸, 𝑃𝐸) 𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑣𝑎𝑙 == 𝑓𝑎𝑙𝑠𝑎

//A Policy Package Object is created if the syntactic and semantic analysis is confirmed in validity engine, else, Policy Object is sent to PE.
1 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑥	 = 	 1	 ; 	 𝑥	 <= 	 𝑀	 ; 	 + + 𝑥)	 {	

	 	 	 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑦	 = 	 1	 ; 	 𝑦	 <= 	 𝑁	 ; 	 + + 𝑦)	 {
 𝑓𝑜𝑟	 𝑖𝑛𝑡	 𝑧	 = 	 1	 ; 	 𝑧	 <= 	 𝐾	 ; 	 + + 𝑧 	 {𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ = 𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ + 𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑥. 𝑦. 𝑧; }	
 𝑖𝑓	 𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ == 1	 ||	 𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ == 0 𝑡ℎ𝑒𝑛	 𝑏𝑟𝑒𝑎𝑘;
	 	 	 	 	 	 	 	 	 𝑒𝑙𝑠𝑒	 𝑓𝑜𝑟	 𝑖𝑛𝑡	 𝑧	 = 	 1	 ; 	 𝑧	 ≤ 	 𝐾	 ; 	 + + 𝑧 	 {𝑆𝑦𝑛𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑥. 𝑦, 1,2, … , 𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ ; }}}
//where M,N and K are the number of rows, columns and leafs in policy matrix respectively.
//In the first syntactic analysis, all capable security algorithms in each security mechanism are analyzed. If the user does not apply for any of algorithms
in a security mechanism, the first analysis is stopped. Also, if the user selects only one security algorithm, the selected algorithm achieves the highest
priority. However, if the user selects more than one algorithm in one security mechanism column, the selected items should be prioritized based on the
capabilities and requirements with the highest priority of 1 (perfect match), low priorities of 2 and 3 (close and possible match) and no-match priority
with value of 0. The prioritization problem is solved in [19].

2 1𝑠𝑡_𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑝𝑚_𝑜𝑏𝑒𝑗𝑐𝑡);
𝑖𝑓	 𝑣𝑎𝑙𝑡𝑒𝑚𝑝 == 𝑡𝑟𝑢𝑒 	 {
 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒	 𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡	 = 	 𝑛𝑒𝑤	 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒(𝑈𝑠𝑒𝑟V, 𝑟𝑒𝑞)
 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑥	 = 	 1	 ; 	 𝑥	 <= 	 𝑀	 ; 	 + + 𝑥)	 {	
	 	 	 	 	 	 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑦	 = 	 1	 ; 	 𝑦	 <= 	 𝑁	 ; 	 + + 𝑦)	 {
 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑧	 = 	 1	 ; 	 𝑧	 <= 	 𝐾	 ; 	 + + 𝑧)	 {	
 	 	 	 	 	 	 𝑖𝑓	 𝑝𝑚XYZ[\]. 𝑥. 𝑦. 𝑧 == 𝑡𝑟𝑢𝑒 	 𝑡ℎ𝑒𝑛	 𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑠𝑝I = 𝑝IJ^; }}}}
𝑒𝑠𝑙𝑒 {2𝑛𝑑_𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑝𝑚_𝑜𝑏𝑒𝑗𝑐𝑡);
 𝑖𝑓	 𝑣𝑎𝑙𝑡𝑒𝑚𝑝 == 𝑡𝑟𝑢𝑒 	 {
 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒	 𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡	 = 	 𝑛𝑒𝑤	 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒(𝑈𝑠𝑒𝑟V, 𝑟𝑒𝑞)
 	 	 	 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑥	 = 	 1	 ; 	 𝑥	 <= 	 𝑀	 ; 	 + + 𝑥)	 {	
	 	 	 	 	 	 	 	 	 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑦	 = 	 1	 ; 	 𝑦	 <= 	 𝑁	 ; 	 + + 𝑦)	 {
 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑧	 = 	 1	 ; 	 𝑧	 <= 	 𝐾	 ; 	 + + 𝑧)	 {	
 	 	 	 	 	 	 	 	 	 𝑖𝑓	 𝑝𝑚XYZ[\]. 𝑥. 𝑦. 𝑧 == 𝑡𝑟𝑢𝑒 	 𝑡ℎ𝑒𝑛	 𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑠𝑝I = 𝑝IJ^; }}}
 𝑒𝑙𝑠𝑒	 { 3𝑟𝑑_𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑝𝑚_𝑜𝑏𝑒𝑗𝑐𝑡);
 𝑖𝑓	 𝑣𝑎𝑙𝑡𝑒𝑚𝑝 == 𝑡𝑟𝑢𝑒 	 {
 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒	 𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡	 = 	 𝑛𝑒𝑤	 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒(𝑈𝑠𝑒𝑟V, 𝑟𝑒𝑞)
 	 	 	 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑥	 = 	 1	 ; 	 𝑥	 <= 	 𝑀	 ; 	 + + 𝑥)	 {	
 	 	 	 	 	 	 	 	 	 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑦	 = 	 1	 ; 	 𝑦	 <= 	 𝑁	 ; 	 + + 𝑦)	 {
 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑧	 = 	 1	 ; 	 𝑧	 <= 	 𝐾	 ; 	 + + 𝑧)	 {	
 	 	 	 	 	 	 	 	 	 𝑖𝑓	 𝑝𝑚XYZ[\]. 𝑥. 𝑦. 𝑧 == 𝑡𝑟𝑢𝑒 	 𝑡ℎ𝑒𝑛	 𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑠𝑝I = 𝑝IJ^; }}}}
 𝑒𝑙𝑠𝑒	 𝑆𝑒𝑛𝑑	 (𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡, 𝑉𝐸, 𝑃𝐸); }}}
//The process of semantic analysis is performed in 3 steps. In the first steps all of the security algorithms with value of 1 are considered and analyzed.
The simplest scenario is happened when there are one or more than one un-conflicted algorithms with value of 1 in each security protocols. The second
step of semantic analysis uses three main functions to match all desired policies with un-conflicted security terms: Elimination, Substitution and
Finalization. The first method eliminates one of the conflicted terms without any significant effect to users’ security requirements and the second on tries
to substitute one of the conflicted terms with other priorities. If all of conflicted terms are modified and the current policy matrix object does not meet
any confliction in all algorithms with value of 1, the object is finalized and other priority values (i.e. 2 and 3) are changed to 0. Else, the next semantic
analysis round is called. The process of semantic analysis needs 3 rounds to check conflicted security terms with same functions. If the confliction is
solved by each of these modification functions, the finalization function of each round transfers the object to the previous round. After the solving
conflicts in each priority the policy package object is created from policy package super class.

The policy engine published an un-certified policy document
based on the policy package object that was created by validity
engine. This document is sent to SLA engine to calculate and
provide the billing details and service agreement. After
generating the SLA document, policy engine sends this
document and the un-certified policy document to cloud
customer for final approval. The Security Level Certification
(SLC) is generated after the approval to create a dedicated
security ring for cloud customer. Example 1 is a generated
security level certification based on WS-Policy and protection
ontology.

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:all>
 <security:AccessManagementProtocol rdf:ID=”AccessManagementRequirement”>
 <security:RoleMechanism rdf:ID=”RoleClassRequirement”>
 <security:PermanentAlgorithm rdf:resource=”PermanentRoleClass”/>
 </security:RoleMechanism>
 <security:ReputationMechanism rdf:ID=ReputationClassRequirement”>
 <security:GeoAlgorithm rdf:resource=”GeoClass”/>
 </security:ReoutationMechanism>
 </security:AccessManagementProtocol>

 <security:CryptographyProtocol rdf:ID=”CryptographyRequirement”>
 <security:SymmetricMechanism rdf:ID=”SymmetricRequirement”>
 <security:AESClass rdf:resource=”AESClass”, key:”256”/>
 </security:SymmetricMechanism>
 <security:ReEncryptionMechanism rdf:ID=REEncryptionRequirement”>
 <security:ManualReEncryption rdf:resource=”ManualReClass”/>
 </security:ReEncryptionMechanism>
 </security:CryptographyProtocol>
 <security:SignatureProtocol rdf:ID=”SignatureRequirement”>
 <security:HashMechanism rdf:ID=”HashClassRequirement”>
 <security:CBCAlgorithm rdf:resource=”CBCClass”/>
 </security: HashMechanism>
 </security: SignatureProtocol>
 <security:KeyManagementProtocol rdf:ID=”KeyManagementRequirement”>
 <security:KeyWrappingMechanism rdf:ID=”KeyWrappingClassRequirement”>
 <security:SymmetricAlgorithm rdf:resource=”SymmetricWrClass”/>
 </security: KeyWrappingMechanism>
 <security:KeyDerivationMechanism rdf:ID=KeyDerivationClassRequirement”>
 <security:SymmetricAlgorithm rdf:resource=”SymmetricDerClass”/>
 </security: KeyDerivationMechanism>
 </security:KeyManagementProtocol>
 <security:AuthenticationProtocol rdf:ID=”AuthenticationRequirement”>
 <security:DoubleMechanism rdf:ID=”DoubleClassRequirement”>
 <security:AuthenticatorAlgorithm rdf:resource=”AuthenticatorClass”/>
 </security: DoubleMechanism>
 </security: AuthenticationProtocol>
 <security:TransportProtocol rdf:ID=”TransportRequirement”>
 <security:TLSMechanism rdf:ID=”TLSClassRequirement”/>
 </security: TransportProtocol>
 </wsp:all>
 </wsp:ExactlyOne>
</wsp:Policy>

 In this example, cloud customer requests a permanent role
class (e.g. Manager, Employee, etc.) and geo class (e.g. IP
address from US) as access management protocol, AES-256
[20] for encryption associated with manual re-encryption as
cryptography protocol, CBC hash function as signature
protocol, symmetric key derivation and key wrapping as key
management protocol, second-password authenticator as
authentication class, and TLS as transport class.

B. Policy Management System (PMS)
 The second phase of the suggested model is to manage
established security rings and to assure applied security
mechanisms based on defined security rings. Policy Match Gate
is a defined component to schedule applying policies and to
manage resources for this policy mapping by managing PMS
virtual cluster. This cluster includes special VMs to apply
defined policies to data and a Pre-Processing Unit (PPU) to
distribute requests on VMs. Hence, several components and
variables are defined as follows:
Ø Virtual Machines (VM): Given I virtual machines that are

hosted by PMS virtual cluster and donated as
𝑉𝑀`, 𝑉𝑀a, … , 𝑉𝑀b where the current and optimal CPU

utilization of 𝑉𝑀c (𝑖 = 	 1,2, … 𝐼) is 𝐶𝑉𝑀c and 𝑂𝑉𝑀c.
Ø Applied Policy Files (F): Given J files waiting to be

processed for applying security polices based on defied
levels of SLC where the 𝑗 − 𝑡ℎ file corresponds to 𝑊Z that
represents the size of 𝐹Z.

Ø SLC Index (SI): SLC index is a defined index (1 ≤ 𝑆𝐼 ≤
4)	 that prioritize the scheduling process according to the
chosen security mechanisms in SLC (the value of 1 is the
highest and the value of 4 is the lowest priority). In fact,
this index is calculated based on the confidentiality of the
security level regarding to all security mechanism in SLC.
Table 1 shows an example of how to define SI for
cryptography protocol. The final value of SI is calculated

according to the average value of SI in each protocol (Table
2 shows the example of calculating the final value of SI).

TABLE I. AN EXAMPLE OF SI VALUE IN CRYPTOGRAPHY PROTOCOL
 Mechanism Algorithm Key-Size SI Selection
1 Symmetric AES 256 1.0
2 Re-Encryption Manual - 1.0 √
3 Symmetric AES 192 1.3
4 Symmetric AES 128 1.7
5 Symmetric 3DES 256 1.7 √
6 Asymmetric RSA 2048 1.7
7 Symmetric 3DES 128 2.0
8 Asymmetric RSA 1024 2.0
9 Symmetric DES 256 2.2
10 Symmetric DES 192 2.5
11 Re-Encryption Time-Based - 2.5
12 Asymmetric RSA 512 3.2
13 Symmetric DES 128 3.2
14 Asymmetric Diffie-Hellman 2048 3.5
15 Asymmetric Diffie-Hellman 1024 3.8
 Total Value of SI : 1.35

TABLE II. AN EXAMPLE FOR CALCULATING THE FINAL VALUE OF SI
 Protocol SI
1 Cryptography 1.35
2 Authentication 2.10
3 Key Management 2.25
4 Transport 1.70
5 Signature 2.25
6 Access Control 1.50
Final Value of SI for 𝑆𝐿𝐶l : 1.85
(𝛿	 ∈ {1,2, …𝑁} and 𝑁 represents total number of dedicated security levels)

 The main objective of PMS is how to schedule item of set
𝐹	 = {𝑓 , 𝑓a, … 𝑓o} where the 𝑗 − 𝑡ℎ file is associated with 𝑆𝐿𝐶l
(𝛿	 ∈ {1,2, …𝑁} and 𝑁 represents the total number of dedicated
security levels) to I virtual machines by classifying them to
several load groups based on SI as a priority index. In fact, PMS
uses a priority-based scheduling schema based on a defined
prioritization algorithm.

Algorithm 2
Policy Management Scheduling System Based on SLC Index

Input: set 𝐹	 = {𝑓 , 𝑓a, … 𝑓o} where the 𝑗 − 𝑡ℎ file is associated with 𝑆𝐿𝐶l (𝛿	 ∈ {1,2, …𝑁} and 𝑁 represents the total number of dedicated security levels)

Output: 𝐷(𝐹); Applying Defined Policies to all items in set F.
1 𝑆𝑜𝑟𝑡	 𝐹1, 𝑆𝐼, 𝑄𝐷 ;

// The high priority queue (𝑃𝑓I = 1) is sorted based on the value of SI and QoS-Driven parameters. If fact, SI is the first priority for comparison and QD
is the second in the case of same SI values.

2 𝐷 𝐹
{𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑥	 = 	 1	 ; 	 𝑥	 ≤ 	 𝑀	 ; 	 + + 𝑥)	 {
 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑦	 = 	 1	 ; 	 𝑦	 ≤ 	 𝐼	 ; 	 + + 𝑦)	 {
 𝑖𝑓	 (𝐶𝑉𝑀J 	 ≠ 	 𝑂𝑉𝑀J)	 && (𝑂𝑉𝑀J − 𝐶𝑉𝑀J) > 	 𝑊(𝑓I) 	 𝐴𝑠𝑠 𝑓I, 𝑉𝑀J ;
	 	 	 	 	 	 𝑓I. 𝑎𝑠𝑠 = 𝑡𝑟𝑢𝑒
	 	 	 	 	 	 𝑏𝑟𝑒𝑎𝑘; }
	 	 	 𝑖𝑓	 𝑓I. 𝑎𝑠𝑠 = 𝑓𝑎𝑙𝑠𝑒 	 𝑟𝑒_𝑎𝑑𝑑 𝑓I, 𝐹 ; }}
// The process of scheduling is based on the optimal and current utilization of each virtual machine. In the first round, all sorted tasks in the first category
are distributed in VMs according to the value of 𝐶𝑉𝑀c and 𝑂𝑉𝑀c . If a first priority task is not assigned on any VMs due to the utilization value, it will
be re-added to the high priority queue. (M represent the number of files in the high priority queue)

3 𝑆𝑜𝑟𝑡	 𝐹a, 𝑆𝐼, 𝑄𝐷 ;
// The second priority queue (𝑃𝑓I = 2) is sorted based on the value of SI and QoS-Driven parameters same as 𝐹 .

4 𝐷 𝐹a
// The second priority set is distributed in VMs based on the optimal and current utilization of each virtual machine. However, if a task is added to the
first priority set the un-assigned tasks in 𝐹a will be assigned after processing 𝐹 again.

5 𝑆𝑜𝑟𝑡	 𝐹v, 𝑆𝐼, 𝑄𝐷 ;
// The low priority queue (𝑃𝑓I = 3) is sorted based on the value of SI and QoS-Driven parameters same as 𝐹 .

6 𝐷 𝐹v
// The low priority set is distributed in VMs based on the optimal and current utilization of each virtual machine. However, if a task is added to the first
and second priority sets the un-assigned tasks in 𝐹v will be assigned after processing 𝐹 and 𝐹a	 again.

TABLE III. COMPARISON BETWEEN PROPOSED SCHEMA (PME) AND OTHER POLICY MANAGEMENT MODELS
 IETF [6] Ponder [11] KaoS [12] Rei [15] Di Modica [17] PME
Language-Based Yes Yes Yes Yes Yes Yes
Object-Oriented No Yes No No No Yes
Syntactic & Semantic Analysis No No No No Yes Yes
SLC No No No No No Yes
PMS No No No No No Yes
Policy Match Gate No No No No No Yes
Validity Check Yes Yes No Yes Yes Yes

Accordingly, PPU tries to classify the queue to 3 main priority
categories:

 𝑓𝑜𝑟	 (𝑖𝑛𝑡	 𝑥	 = 	 1	 ; 	 𝑥	 <= 	 𝐽	 ; 	 + + 𝑥)	 {
 𝛼 = 𝑆𝐿𝐶	 𝑓I ;
 𝑠𝑤𝑖𝑡𝑐ℎ	 𝛼 {
 𝑐𝑎𝑠𝑒	 1 ≤ 𝛼 < 2 : 𝑃𝑓I = 1;
 𝑐𝑎𝑠𝑒	 2 ≤ 𝛼 < 3 : 𝑃𝑓I = 2;
 𝑐𝑎𝑠𝑒	 3 ≤ 𝛼 ≤ 4 : 𝑃𝑓I = 3; }

 The scheduling process in each category is based on QoS-
Driven in cloud-based environments [21] to use SI associated
with other task attributes such as user privilege, expectation,
task length and the pending time in queue to compute the
priority and sort tasks by the priority. In fact, the scheduler sorts
the high priority level based on the value of SI associated with
QoS-Driven parameters and distributes them to VMs based on
the value of 𝐶𝑉𝑀c and 𝑂𝑉𝑀c in each VM (Algorithm 2).

 The second component in PMS is policy checkpoint to ensure
about applied policies based on defined SLC. After applying
policies to each file, the checkpoint component reviews the
applied polices to confirm the validity security terms such as
access management and authentication headers, encryption
algorithms and keys, re-encryption procedures and etc. After
this validation process, a confirmation is sent to cloud customer
about the successful policy application to data.

IV. EVALUATION AND CONSLUSION
 Table 3. shows the advantages of the proposed schema in
comparison with similar policy management models. The most
important characteristic of this model is syntactic and semantic
analysis of requested policies by validity engine to provide
reliable mapping between security mechanism and requested
policies according to the capabilities of cloud provider and
requirements of the cloud customers. Furthermore, two other
components were introduced to ensure about the policy
application process for all stored data based on defied policies
in each SLCs.

ACKNOWLEDGMENT
 This research has been supported by Clean Sky ITN project
(607584 Grant No.) funded by the Marie-Curie-Actions within
the 7th Framework Program of the European Union (EU FP7).

REFERENCES
[1] F. Fatemi Moghaddam, M. Baradaran Rohani, M. Ahmadi, T. Khodadadi,

and K. Madadipouya, “Cloud Computing  : Vision, Architecture and

Characteristics,” in IEEE 6th Control and System Graduate Research
Colloquium (ICSGRC), 2015, pp. 1–6.

[2] F. Fatemi Moghaddam, M. Ahmadi, S. Sarvari, M. Eslami, and A. Golkar,
“Cloud Computing Challenges and Opportunities: A Survey,” in Proc. of
1st International Conference on Telematics and Future Generation
Networks (IEEE TAFGEN), 2015, pp. 34–38.

[3] H. Takabi, J.B. Joshi, and G.J. Ahn, “Security and Privacy Challenges in
Cloud Computing Environments,” IEEE Security & Privacy, vol. 8, no. 6,
pp. 24–31, 2010.

[4] S.A. de Chaves, C.B. Westphall, and F.R Lamin, “SLA Perspective in
Security Management for Cloud Computing,” in Proc. of Sixth
International Conference on Networking and Services, 2010, pp. 212-217.

[5] T. Phan, J. Han, J. Schneider, T. Ebringer, and T. Rogers, “A Survey of
Policy-Based Management Approaches for Service Oriented Systems,” in
Proc. of 19th Australian Conference on Software Engineering (ASWEC),
2008, pp. 392–401.

[6] Y.Snirand, Y.Rambergand, J.Strassnerand, R.Cohenand, and B. Moore,
“Policy Quality of Service (QoS) Information Model,” Technical report,
IETF, 2003.

[7] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy Core
Information Model,” Version I Specification, 2001.

[8] T. Phan, J. Han, J.G. Schneider, T. Ebringer, and T. Rogers, “A Survey of
Policy-Based Management Approaches for Service Oriented Systems,” in
Proc. 19th Australian Conference on of Software Engineering (ASWEC),
2008, pp. 392-401.

[9] IETF. Specification for the Representation of CIM in XML, Version 2.2.
Technical Report, IETF, 2007.

[10] J. Strassner, “Mapping the Policy Core Information Model to a
Directory,” Technical Report, OASIS, 2001.

[11] N. Damianou, “A Policy Framework for Management of Distributed
Systems,” Imperial College, 2002.

[12] A. Uszok, J. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and S.
Aitken, “KAoS Policy Management for Semantic Web Services,” IEEE
Intelligent Systems, vol.19, no.4, pp. 32–41, 2004.

[13] A. Uszok, J. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton, and S.
Aitken, “KAoS Policies for Web Services,” W3C, 2003.

[14] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L.
Bunch, M. Johnson, S. Kulkarni, and J. Lott, “KAoS Policy and Domain
Services: Toward a Description Logic Approach to Policy Representation,
De-confliction, and Enforcement,” Policy, 2003.

[15] L. Kagal, “Rei: A Policy Language for the Me-Centric Project,” Technical
Report, HP Labs, 2002.

[16] Y. Zou, T. Finin, and H. Chen, “F-OWL: An Inference Engine for the
Semantic Web. In Formal Approaches to Agent-Based Systems,” Lecture
Notes in Computer Science. Springer, vol. 3228, pp. 238-248, 2004.

[17] G. Di Modica and O. Tomarchio, “Matchmaking Semantic Security
Policies in Heterogeneous Clouds,” Future Generation Computer
Systems, vol. 55, pp. 176–185, March 2015.

[18] W3C, Web Services Policy 1.5 - Framework, W3C Recommendation,
September 2007. Available at: http://www.w3.org/TR/ws-policy/.

[19] F. Fatemi Moghaddam, R. Yahyapour and P. Wieder, “Policy Engine as
a Service (PEaaS): An Approach to a Reliable Policy Management
Framework in Cloud Computing Environments,” (In Press).

[20] J. Daemen, and V. Rijmen, “AES Proposal: Rijndael”. National Institute
of Standards and Technology, pp. 1-10. April 2001.  

[21] X. Wu, M. Deng, R. Zhang and S. Shengyuan, “A Task Scheduling
Algorithm Based on QoS-Driven in Cloud Computing,” Procedia
Computer Science, Vol. 17, pp. 1162–1171.

