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Abstract— One of the most challenging issues regarding to the 
information policy concerns in cloud computing environments is 
to provide an appropriate level of security for the stored data in 
cloud storages. In fact, each individual cloud customer needs to be 
granted reliable security level(s) based on defined details in SLA. 
The main aim of this paper is to propose multi-level policy-based 
schema to classify and manage data in cloud storages based on the 
sensitivity and confidentiality for enhancement of reliability in 
cloud computing environments. Furthermore, an efficient 
algorithm has been introduced to ensure the accuracy and 
authenticity of applying and managing defined policies according 
to the capabilities of the cloud providers and requirements of cloud 
customers. The most important characteristic of this model is 
syntactic and semantic analysis of requested policies by validity 
engine to provide reliable mapping between security mechanism 
and requested policies. Moreover, Policy Match Gate and Policy 
Checkpoint have been introduced to ensure about the policy 
application process for all stored data based on defied policies in 
Security Level Certificate. 
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I.    INTRODUCTION  
   Cloud computing technology is an unprecedented paradigm 
that uses the concepts of virtualization, processing power, 
storage, connectivity, and sharing to provide pool of resources, 
store and share them between various devices via a broad 
network (i.e. Internet) to offer on-demand services to end users 
in compliance with the concepts of isolation, security, 
distribution, and elasticity [1].  Despite the considerable benefits 
of cloud-based environments [2], there are some information 
policy concerns such as security, privacy and access control that 
have affected the reliability of this newfound technology [3]. 
One of the most challenging issues regarding to the information 
policy concerns is to provide an appropriate level of security for 
the stored data in cloud storages. In fact, each individual cloud 
customer needs to be granted reliable security level(s) based on 
defined details in SLA [4].  

   These security levels might be common for all customers or 
independent based on the data sensitivity. Applying a single 
security level for all stored data is not efficient and takes 
considerable processing power to manipulate sensitive and also 

non-sensitive data. On the other hand, managing multiple 
security levels is the most challenging concern in multi-level 
policy models and needs an appropriate and efficient algorithm. 
The most popular approach to express high-level security 
constraints is based on the usage of metadata and languages for 
the specification of security policies [5]. The main aim of this 
paper is to propose multi-level policy-based schema to classify 
and manage data in cloud storages based on the sensitivity and 
confidentiality for enhancement of reliability in cloud 
computing environments. Furthermore, an efficient algorithm 
has been introduced to ensure the accuracy and authenticity of 
applying and managing defined policies according to the 
capabilities of the cloud providers and requirements of cloud 
customers. 

 

II.   RELATED WORKS 
   There are various policy-related classification algorithms that 
are based on language and metadata for specification of security 
policies. One of the defined frameworks that includes policy 
model, definition language, sets of policy technologies and a 
policy architecture meta model is proposed by IETF [6] to 
represent, manage, share and reuse policies and policy 
information in a vendor-independent, interoperable and 
scalable manner. IETF model mostly focuses on network 
policies to control IP-Security and Quality of Service (QoS) [7]. 
One of the most challenging efforts in this model is to map IETF 
models into specified implementation schema [8] such as Web 
Based Enterprise Management (WBEM) [9] or Directory 
Enabled Network (DEN) [10]. 

   Ponder is an object oriented-based policy management 
framework that was proposed by Imperial College [11] and 
includes general architecture, policy deployment model and 
various extensions for access control schema and QoS 
management. This model allows users to define events, 
constraints, constants and other reusable elements that can be 
part of many policies and allows the instantiation of typed 
policy specification to support parameterization of policies. The 
main drawback of Ponder is the lack of generality [8] by using 
several basic policy types and compositing policy types each 
with various syntax.  



   KAoS is an ontology language uses the Web Ontology 
Language (OWL) [12] to allow users to define policies to grant 
predictability and controllability of agents and distributed 
systems such as grid computing and multi-agent systems [13]. 
Four main types of policies are defined in KAoS: Positive-
Authorization, Negative-Authorization, Positive-Obligation 
and Negative-Obligation and similar to IETF, each policy is 
associated with management properties. KAoS provides two 
sets of services: Domain Services (that enable the hierarchical 
grouping of users and computational entities to administrate 
policies easier) and Policy Services (that is based on 
specification, conflict resolution, management and policy 
enforcement) [14]. 

   In 2002, HP labs proposed a policy framework (Rei) [15] to 
provide an independent domain policy specification based on 
deontic constructs and F-OWL reasoned [16] and to allow 
several specification policies (i.e. right, prohibition, 
dispensations and obligations). Rei supports two main meta 
policies: Default Meta Policy (to describe the default behavior 
of the policy) and Meta-Meta Policy (to allow the setting of 
precedencies based on default meta policies).  

   Di Modica and Tomarchio (2015) [17] suggested an approach 
that leverages on the semantic technology to enrich 
standardized security policies with an ad-hoc content and to 
enable machine reasoning which is then used for both the 
discovery and the composition of security-enabled services. In 
this model, requirements and capabilities for cloud customers 
and providers are defined within policies which are adopted to 
policy intersection mechanism provided by WS-Policy [19]. 
WS-Policy is a recommended framework from W3C for policy 
specification of Web Services that includes policies that are 
defined as a collection of alternatives contain assertions to 
specify well-established characteristics for using selection of 
various services (e.g. requirements, capabilities or behaviors).  

   In overall, the main concern of described models is the 
discovery, interoperability and compatibility of security 
requirements based on characteristics of current distributed 
networks and cloud-based environments. Hence, this paper uses 
the concepts of security ontology to define reliable and 
interoperable security policies in virtualized infrastructure and 
to grant syntactic and also semantic matching of security 
policies. 

 

III.   PROPOSED MODEL 
   The architecture of our proposed model is based on Protection 
Ontology and have been described in two phases: 
Establishment of Security Rings (ESR) and Policy Management 
System (PMS). Protection ontology [19] is a defined object 
oriented framework that includes potential security terms (i.e. 
protocols, mechanisms and algorithms) and appropriate 
relations between them to provide an efficient and reliable 
policy management framework. This ontology is based on two 
super classes (Policy Matrix and Policy Packages) and three 
levels of security includes Protocol Level (Access Control, 

Cryptography, Key Management, Transport, Authentication 
and Signature Protocols), Mechanism Level (Several security 
mechanisms for each protocol that are defined to provide 
appropriate relation between the highest level and the lowest 
level of architecture) and Algorithm Level (The lowest level of 
the protection ontology that includes different security 
algorithms). Fig. 1 shows an example of protection ontology in 
details. In fact, the main aim of this ontology is to categorize 
potential security terms of cloud provider (based on 
capabilities) and establish appropriate connections between 
them for a reliable policy management model.  
 

 
Fig. 1. Structure of Protection Ontology 

 

   To have a better understating of the model, the following 
terms are defined: 
 
•   Cloud Provider (CP): A service provider that offers 

customers cloud-based services such as storage. In our 
suggested model, CP offers security models as a service to 
customers and guarantees the availability and reliability of 
offered terms based on defined details in SLA. 

•   Cloud Customer (CC): An organization or a company that 
uses cloud services for employments or subscribers (e.g. 
Universities, Hospitals, etc.).  

•   Cloud User (CU): Defined end-users that use cloud-based 
services that are offered by CC according to the internal 
contracts. (e.g. Students or Lecturers in a University). 
 

   As was described, the proposed model is based on two phases 
and the overview of these phases have been shown in figure 2.  

 



 
 

Fig. 2. Overview of Policy Management Engine 
 
 

A.   Establishment of Security Rings (ESR)  
The first phase of our model is providing security as a service 
model for cloud customers based on protection ontology to 
create dedicated security rings (levels) according to their 
requirements and the capabilities of the cloud provider. In this 
phase, cloud customers select desired security mechanisms and 
set appropriate controls and policies regarding to the available 
and offered mechanisms of service provider. Fig. 3. shows the 
process of establishment of security rings in details.  

   In this model, Policy Database component is updated based 
on the potential security policies according to the capabilities of 
the service provider (i.e. new or revoked mechanisms). 
Typically, these updates have been done in the lowest level of 
protection ontology (Algorithm Level) by creation or 
elimination of new classes and affect relevant classes in upper 
levels based on inheritance concepts. Finally, the policy matrix 

super class is updated and one policy matrix object is created 
by Policy Engine component for cloud customers regarding to 
the last updates.  

The created object is accessible to cloud customer by API and 
the customer selects appropriate security mechanisms in each 
protocol based on requirements. This selection may be one or 
more in each protocol and is prioritized by the customer if the 
selection in each mechanism is more than one algorithm.  

The selected object is sent to Validity Engine component for 
syntactic and semantic analysis of the selected policy object. 
The process of validity analysis is performed in two steps 
according to syntactic and semantic checking of policy matrix 
object (Algorithm 1) to provide an un-certified policy package 
object based on WS-Policy [18]. 

 
 

 
 

Fig. 3. Establishment of Security Rings 
 

 



Algorithm 1 
Syntactic and Semantic Analysis of Policy Matrix Object 
 
 

Input: pm_object: a policy matrix object form policy matrix super class that is created by policy engine and modified with desired inputs by cloud 
customer.  

Output: 
	  𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑣𝑎𝑙 == 𝑡𝑟𝑢𝑒
𝑆𝑒𝑛𝑑	  (𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡, 𝑉𝐸, 𝑃𝐸) 𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑣𝑎𝑙 == 𝑓𝑎𝑙𝑠𝑎 

//A Policy Package Object is created if the syntactic and semantic analysis is confirmed in validity engine, else, Policy Object is sent to PE.  
1 𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑥	   = 	  1	  ; 	  𝑥	   <= 	  𝑀	  ; 	  + + 𝑥)	  {	  

	  	  	  𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑦	   = 	  1	  ; 	  𝑦	   <= 	  𝑁	  ; 	  + + 𝑦)	  { 
      𝑓𝑜𝑟	   𝑖𝑛𝑡	  𝑧	   = 	  1	  ; 	  𝑧	   <= 	  𝐾	  ; 	  + + 𝑧 	  {𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ = 𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ + 𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑥. 𝑦. 𝑧; }	  
      𝑖𝑓	   𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ == 1	  ||	  𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ == 0 𝑡ℎ𝑒𝑛	  𝑏𝑟𝑒𝑎𝑘; 
	  	  	  	  	  	  	  	  	  𝑒𝑙𝑠𝑒	  𝑓𝑜𝑟	   𝑖𝑛𝑡	  𝑧	   = 	  1	  ; 	  𝑧	   ≤ 	  𝐾	  ; 	  + + 𝑧  	  {𝑆𝑦𝑛𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑥. 𝑦, 1,2, … , 𝑠𝑦𝑛𝑡𝑒𝑚𝑝IJ ; }}} 
//where M,N and K are the number of rows, columns and leafs in policy matrix respectively. 
//In the first syntactic analysis, all capable security algorithms in each security mechanism are analyzed. If the user does not apply for any of algorithms 
in a security mechanism, the first analysis is stopped. Also, if the user selects only one security algorithm, the selected algorithm achieves the highest 
priority. However, if the user selects more than one algorithm in one security mechanism column, the selected items should be prioritized based on the 
capabilities and requirements with the highest priority of 1 (perfect match), low priorities of 2 and 3 (close and possible match) and no-match priority 
with value of 0. The prioritization problem is solved in [19]. 

2 1𝑠𝑡_𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑝𝑚_𝑜𝑏𝑒𝑗𝑐𝑡); 
𝑖𝑓	   𝑣𝑎𝑙𝑡𝑒𝑚𝑝 == 𝑡𝑟𝑢𝑒 	  { 
   𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒	  𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡	   = 	  𝑛𝑒𝑤	  𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒(𝑈𝑠𝑒𝑟V, 𝑟𝑒𝑞) 
   𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑥	   = 	  1	  ; 	  𝑥	   <= 	  𝑀	  ; 	  + + 𝑥)	  {	  
	  	  	  	  	  	  𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑦	   = 	  1	  ; 	  𝑦	   <= 	  𝑁	  ; 	  + + 𝑦)	  { 
         𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑧	   = 	  1	  ; 	  𝑧	   <= 	  𝐾	  ; 	  + + 𝑧)	  {	  
      	  	  	  	  	  	  𝑖𝑓	   𝑝𝑚XYZ[\]. 𝑥. 𝑦. 𝑧 == 𝑡𝑟𝑢𝑒 	  𝑡ℎ𝑒𝑛	  𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑠𝑝I = 𝑝IJ^; }}}} 
𝑒𝑠𝑙𝑒 {2𝑛𝑑_𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑝𝑚_𝑜𝑏𝑒𝑗𝑐𝑡); 
   𝑖𝑓	   𝑣𝑎𝑙𝑡𝑒𝑚𝑝 == 𝑡𝑟𝑢𝑒 	  { 
      𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒	  𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡	   = 	  𝑛𝑒𝑤	  𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒(𝑈𝑠𝑒𝑟V, 𝑟𝑒𝑞) 
   	  	  	  𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑥	   = 	  1	  ; 	  𝑥	   <= 	  𝑀	  ; 	  + + 𝑥)	  {	  
	  	  	  	  	  	  	  	  	  𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑦	   = 	  1	  ; 	  𝑦	   <= 	  𝑁	  ; 	  + + 𝑦)	  { 
            𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑧	   = 	  1	  ; 	  𝑧	   <= 	  𝐾	  ; 	  + + 𝑧)	  {	  
      	  	  	  	  	  	  	  	  	  𝑖𝑓	   𝑝𝑚XYZ[\]. 𝑥. 𝑦. 𝑧 == 𝑡𝑟𝑢𝑒 	  𝑡ℎ𝑒𝑛	  𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑠𝑝I = 𝑝IJ^; }}} 
            𝑒𝑙𝑠𝑒	  { 3𝑟𝑑_𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑝𝑚_𝑜𝑏𝑒𝑗𝑐𝑡); 
               𝑖𝑓	   𝑣𝑎𝑙𝑡𝑒𝑚𝑝 == 𝑡𝑟𝑢𝑒 	  { 
                  𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒	  𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡	   = 	  𝑛𝑒𝑤	  𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒(𝑈𝑠𝑒𝑟V, 𝑟𝑒𝑞) 
               	  	  	  𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑥	   = 	  1	  ; 	  𝑥	   <= 	  𝑀	  ; 	  + + 𝑥)	  {	  
            	  	  	  	  	  	  	  	  	  𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑦	   = 	  1	  ; 	  𝑦	   <= 	  𝑁	  ; 	  + + 𝑦)	  { 
                        𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑧	   = 	  1	  ; 	  𝑧	   <= 	  𝐾	  ; 	  + + 𝑧)	  {	  
                  	  	  	  	  	  	  	  	  	  𝑖𝑓	   𝑝𝑚XYZ[\]. 𝑥. 𝑦. 𝑧 == 𝑡𝑟𝑢𝑒 	  𝑡ℎ𝑒𝑛	  𝑝𝑝_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑠𝑝I = 𝑝IJ^; }}}} 
                          𝑒𝑙𝑠𝑒	  𝑆𝑒𝑛𝑑	  (𝑝𝑚_𝑜𝑏𝑗𝑒𝑐𝑡, 𝑉𝐸, 𝑃𝐸); }}} 
//The process of semantic analysis is performed in 3 steps. In the first steps all of the security algorithms with value of 1 are considered and analyzed. 
The simplest scenario is happened when there are one or more than one un-conflicted algorithms with value of 1 in each security protocols. The second 
step of semantic analysis uses three main functions to match all desired policies with un-conflicted security terms: Elimination, Substitution and 
Finalization. The first method eliminates one of the conflicted terms without any significant effect to users’ security requirements and the second on tries 
to substitute one of the conflicted terms with other priorities. If all of conflicted terms are modified and the current policy matrix object does not meet 
any confliction in all algorithms with value of 1, the object is finalized and other priority values (i.e. 2 and 3) are changed to 0. Else, the next semantic 
analysis round is called. The process of semantic analysis needs 3 rounds to check conflicted security terms with same functions. If the confliction is 
solved by each of these modification functions, the finalization function of each round transfers the object to the previous round. After the solving 
conflicts in each priority the policy package object is created from policy package super class. 

 

The policy engine published an un-certified policy document 
based on the policy package object that was created by validity 
engine. This document is sent to SLA engine to calculate and 
provide the billing details and service agreement. After 
generating the SLA document, policy engine sends this 
document and the un-certified policy document to cloud 
customer for final approval. The Security Level Certification 
(SLC) is generated after the approval to create a dedicated 
security ring for cloud customer. Example 1 is a generated 
security level certification based on WS-Policy and protection 
ontology.  
 

<wsp:Policy> 
   <wsp:ExactlyOne> 
      <wsp:all> 
         <security:AccessManagementProtocol rdf:ID=”AccessManagementRequirement”> 
            <security:RoleMechanism rdf:ID=”RoleClassRequirement”> 
               <security:PermanentAlgorithm rdf:resource=”PermanentRoleClass”/> 
            </security:RoleMechanism> 
            <security:ReputationMechanism rdf:ID=ReputationClassRequirement”> 
               <security:GeoAlgorithm rdf:resource=”GeoClass”/> 
            </security:ReoutationMechanism> 
         </security:AccessManagementProtocol> 

         <security:CryptographyProtocol rdf:ID=”CryptographyRequirement”> 
            <security:SymmetricMechanism rdf:ID=”SymmetricRequirement”> 
               <security:AESClass rdf:resource=”AESClass”, key:”256”/> 
            </security:SymmetricMechanism> 
            <security:ReEncryptionMechanism rdf:ID=REEncryptionRequirement”> 
               <security:ManualReEncryption rdf:resource=”ManualReClass”/> 
            </security:ReEncryptionMechanism> 
         </security:CryptographyProtocol> 
         <security:SignatureProtocol rdf:ID=”SignatureRequirement”> 
            <security:HashMechanism rdf:ID=”HashClassRequirement”> 
               <security:CBCAlgorithm rdf:resource=”CBCClass”/> 
            </security: HashMechanism> 
         </security: SignatureProtocol> 
         <security:KeyManagementProtocol rdf:ID=”KeyManagementRequirement”> 
            <security:KeyWrappingMechanism rdf:ID=”KeyWrappingClassRequirement”> 
               <security:SymmetricAlgorithm rdf:resource=”SymmetricWrClass”/> 
            </security: KeyWrappingMechanism> 
            <security:KeyDerivationMechanism rdf:ID=KeyDerivationClassRequirement”> 
               <security:SymmetricAlgorithm rdf:resource=”SymmetricDerClass”/> 
            </security: KeyDerivationMechanism> 
         </security:KeyManagementProtocol> 
         <security:AuthenticationProtocol rdf:ID=”AuthenticationRequirement”> 
            <security:DoubleMechanism rdf:ID=”DoubleClassRequirement”> 
               <security:AuthenticatorAlgorithm rdf:resource=”AuthenticatorClass”/> 
            </security: DoubleMechanism> 
         </security: AuthenticationProtocol> 
         <security:TransportProtocol rdf:ID=”TransportRequirement”> 
            <security:TLSMechanism rdf:ID=”TLSClassRequirement”/> 
         </security: TransportProtocol> 
      </wsp:all> 
   </wsp:ExactlyOne> 
</wsp:Policy> 
 



   In this example, cloud customer requests a permanent role 
class (e.g. Manager, Employee, etc.) and geo class (e.g. IP 
address from US) as access management protocol, AES-256 
[20] for encryption associated with manual re-encryption as 
cryptography protocol, CBC hash function as signature 
protocol, symmetric key derivation and key wrapping as key 
management protocol, second-password authenticator as 
authentication class, and TLS as transport class. 

B.   Policy Management System (PMS) 
   The second phase of the suggested model is to manage 
established security rings and to assure applied security 
mechanisms based on defined security rings. Policy Match Gate 
is a defined component to schedule applying policies and to 
manage resources for this policy mapping by managing PMS 
virtual cluster. This cluster includes special VMs to apply 
defined policies to data and a Pre-Processing Unit (PPU) to 
distribute requests on VMs. Hence, several components and 
variables are defined as follows:   
Ø   Virtual Machines (VM): Given I virtual machines that are 

hosted by PMS virtual cluster and donated as 
𝑉𝑀`, 𝑉𝑀a, … , 𝑉𝑀b  where the current and optimal CPU 

utilization of 𝑉𝑀c (𝑖 = 	  1,2, … 𝐼) is 𝐶𝑉𝑀c and 𝑂𝑉𝑀c. 
Ø   Applied Policy Files (F): Given J files waiting to be 

processed for applying security polices based on defied 
levels of SLC where the 𝑗 − 𝑡ℎ file corresponds to 𝑊Z that 
represents the size of 𝐹Z. 

Ø   SLC Index (SI): SLC index is a defined index (1 ≤ 𝑆𝐼 ≤
4)	  that prioritize the scheduling process according to the 
chosen security mechanisms in SLC (the value of 1 is the 
highest and the value of 4 is the lowest priority). In fact, 
this index is calculated based on the confidentiality of the 
security level regarding to all security mechanism in SLC. 
Table 1 shows an example of how to define SI for 
cryptography protocol. The final value of SI is calculated 

according to the average value of SI in each protocol (Table 
2 shows the example of calculating the final value of SI).  

TABLE I. AN EXAMPLE OF SI VALUE IN CRYPTOGRAPHY PROTOCOL 
 Mechanism Algorithm Key-Size SI Selection 
1 Symmetric AES 256 1.0  
2 Re-Encryption Manual - 1.0 √ 
3 Symmetric AES 192 1.3  
4 Symmetric AES 128 1.7  
5 Symmetric 3DES 256 1.7 √ 
6 Asymmetric RSA 2048 1.7  
7 Symmetric 3DES 128 2.0  
8 Asymmetric RSA 1024 2.0  
9 Symmetric DES 256 2.2  
10 Symmetric DES 192 2.5  
11 Re-Encryption Time-Based - 2.5  
12 Asymmetric RSA 512 3.2  
13 Symmetric DES 128 3.2  
14 Asymmetric Diffie-Hellman 2048 3.5  
15 Asymmetric Diffie-Hellman 1024 3.8  
   Total Value of SI : 1.35 

TABLE II. AN EXAMPLE FOR CALCULATING THE FINAL VALUE OF SI 
 Protocol SI 
1 Cryptography 1.35 
2 Authentication 2.10 
3 Key Management  2.25 
4 Transport 1.70 
5 Signature 2.25 
6 Access Control 1.50 
Final Value of SI for 𝑆𝐿𝐶l  : 1.85 
(𝛿	   ∈ {1,2, …𝑁} and 𝑁 represents total number of dedicated security levels)  

 

   The main objective of PMS is how to schedule item of set 
𝐹	   = {𝑓 , 𝑓a, … 𝑓o} where the 𝑗 − 𝑡ℎ file is associated with 𝑆𝐿𝐶l 
(𝛿	   ∈ {1,2, …𝑁} and 𝑁 represents the total number of dedicated 
security levels) to I virtual machines by classifying them to 
several load groups based on SI as a priority index. In fact, PMS 
uses a priority-based scheduling schema based on a defined 
prioritization algorithm.  

Algorithm 2 
Policy Management Scheduling System Based on SLC Index 
 
 

Input: set 𝐹	   = {𝑓 , 𝑓a, … 𝑓o} where the 𝑗 − 𝑡ℎ file is associated with 𝑆𝐿𝐶l  (𝛿	   ∈ {1,2, …𝑁} and 𝑁 represents the total number of dedicated security levels) 

Output: 𝐷(𝐹); Applying Defined Policies to all items in set F. 
1 𝑆𝑜𝑟𝑡	   𝐹1, 𝑆𝐼, 𝑄𝐷 ; 

// The high priority queue (𝑃𝑓I = 1) is sorted based on the value of SI and QoS-Driven parameters. If fact, SI is the first priority for comparison and QD 
is the second in the case of same SI values. 

2 𝐷 𝐹  
{𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑥	   = 	  1	  ; 	  𝑥	   ≤ 	  𝑀	  ; 	  + + 𝑥)	  { 
   𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑦	   = 	  1	  ; 	  𝑦	   ≤ 	  𝐼	  ; 	  + + 𝑦)	  { 
      𝑖𝑓	   (𝐶𝑉𝑀J 	  ≠ 	  𝑂𝑉𝑀J)	  && (𝑂𝑉𝑀J − 𝐶𝑉𝑀J) > 	  𝑊(𝑓I) 	  𝐴𝑠𝑠 𝑓I, 𝑉𝑀J ; 
	  	  	  	  	  	  𝑓I. 𝑎𝑠𝑠 = 𝑡𝑟𝑢𝑒 
	  	  	  	  	  	  𝑏𝑟𝑒𝑎𝑘; } 
	  	  	  𝑖𝑓	   𝑓I. 𝑎𝑠𝑠 = 𝑓𝑎𝑙𝑠𝑒 	  𝑟𝑒_𝑎𝑑𝑑 𝑓I, 𝐹 ; }} 
// The process of scheduling is based on the optimal and current utilization of each virtual machine. In the first round, all sorted tasks in the first category 
are distributed in VMs according to the value of 𝐶𝑉𝑀c  and 𝑂𝑉𝑀c . If a first priority task is not assigned on any VMs due to the utilization value, it will 
be re-added to the high priority queue. (M represent the number of files in the high priority queue)          

3 𝑆𝑜𝑟𝑡	   𝐹a, 𝑆𝐼, 𝑄𝐷 ; 
// The second priority queue (𝑃𝑓I = 2) is sorted based on the value of SI and QoS-Driven parameters same as 𝐹 . 

4 𝐷 𝐹a  
// The second priority set is distributed in VMs based on the optimal and current utilization of each virtual machine. However, if a task is added to the 
first priority set the un-assigned tasks in 𝐹a will be assigned after processing 𝐹  again. 

5 𝑆𝑜𝑟𝑡	   𝐹v, 𝑆𝐼, 𝑄𝐷 ; 
// The low priority queue (𝑃𝑓I = 3) is sorted based on the value of SI and QoS-Driven parameters same as 𝐹 . 

6 𝐷 𝐹v  
// The low priority set is distributed in VMs based on the optimal and current utilization of each virtual machine. However, if a task is added to the first 
and second priority sets the un-assigned tasks in 𝐹v will be assigned after processing 𝐹  and 𝐹a	  again. 



TABLE III. COMPARISON BETWEEN PROPOSED SCHEMA (PME) AND OTHER POLICY MANAGEMENT MODELS 
 IETF [6] Ponder [11] KaoS [12] Rei [15] Di Modica [17] PME 
Language-Based Yes Yes Yes Yes Yes Yes 
Object-Oriented No Yes No  No No Yes 
Syntactic & Semantic Analysis No No No No Yes Yes 
SLC No No No No No Yes 
PMS No No No No No Yes 
Policy Match Gate No No No No No Yes 
Validity Check Yes Yes No Yes Yes Yes 

 
Accordingly, PPU tries to classify the queue to 3 main priority 
categories: 

   𝑓𝑜𝑟	  (𝑖𝑛𝑡	  𝑥	   = 	  1	  ; 	  𝑥	   <= 	  𝐽	  ; 	  + + 𝑥)	  { 
      𝛼 = 𝑆𝐿𝐶	   𝑓I ; 
      𝑠𝑤𝑖𝑡𝑐ℎ	   𝛼 { 
         𝑐𝑎𝑠𝑒	   1 ≤ 𝛼 < 2 : 𝑃𝑓I = 1; 
         𝑐𝑎𝑠𝑒	   2 ≤ 𝛼 < 3 : 𝑃𝑓I = 2; 
         𝑐𝑎𝑠𝑒	   3 ≤ 𝛼 ≤ 4 : 𝑃𝑓I = 3; } 
 

   The scheduling process in each category is based on QoS-
Driven in cloud-based environments [21] to use SI associated 
with other task attributes such as user privilege, expectation, 
task length and the pending time in queue to compute the 
priority and sort tasks by the priority. In fact, the scheduler sorts 
the high priority level based on the value of SI associated with 
QoS-Driven parameters and distributes them to VMs based on 
the value of 𝐶𝑉𝑀c and 𝑂𝑉𝑀c in each VM (Algorithm 2).   

   The second component in PMS is policy checkpoint to ensure 
about applied policies based on defined SLC. After applying 
policies to each file, the checkpoint component reviews the 
applied polices to confirm the validity security terms such as 
access management and authentication headers, encryption 
algorithms and keys, re-encryption procedures and etc. After 
this validation process, a confirmation is sent to cloud customer 
about the successful policy application to data.  

IV.  EVALUATION AND CONSLUSION 
   Table 3. shows the advantages of the proposed schema in 
comparison with similar policy management models. The most 
important characteristic of this model is syntactic and semantic 
analysis of requested policies by validity engine to provide 
reliable mapping between security mechanism and requested 
policies according to the capabilities of cloud provider and 
requirements of the cloud customers. Furthermore, two other 
components were introduced to ensure about the policy 
application process for all stored data based on defied policies 
in each SLCs. 
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